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The elastic properties in bulk and shear 
of a glass bead-reinforced epoxy resin 
composite 

R.J. CROWSON*, R. G. C. ARRIDGE 
H.H. Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, 
Bristol, UK 

A description is given of a new method for the measurement, using a single specimen, of 
the bulk, shear, and Young's moduli, and the thermal expansion coefficient of solid 
polymers. The method has been used to measure the bulk and shear moduli and 
expansion coefficient of a glass bead-filled epoxy resin over a particle concentration range 
of 0 to 40% volume. Results are compared with the theoretical predictions of Hill, Hashin 
and Shtrikman, Paul and others. In the glassy region the experimental data agree well 
with the Hashin and Shtrikman lower bound, but above Tg the material is reinforced 
much more than suggested by these theories. Some evidence is given for a difference in 
glass transition temperature between filled and unfilled materials. 

1. Introduction 
Measurements of the mechanical properties of 
polymers present many difficulties which arise 
mostly from their viscoelastic nature. This means 
that the materials possess properties which are 
often strongly dependent on temperature, fre- 
quency (or creep time) strain rate, strain, heating 
or cooling rate, thermal history, and stress history. 
Although most of these effects are well understood 
it makes the testing of such materials fairly diffi- 
cult. Many of the discrepancies between literature 
values of mechanical properties for polymeric 
materials which are supposedly similar may well 
originate from one or more of the above sources. 
In polymer matrix composites the situation is 
more complex because there are problems of 
homogeneity, adhesion between phases, voidage, 
and phase geometry. For thermosets the concen- 
tration of curing agent, cure time, cure tempera- 
ture, and even specimen size can all affect the final 
product. If  the resulting composite is isotropic, 
only two viscoelastic functions are required to 
specify completely the mechanical behaviour, and 
for the reasons outlined above, it is most con- 

venient, but rather rare, if the measurements are 
made on the same specimen. Most of the theoreti- 
cal treatments of composite moduli are developed 
in terms of bulk and shear moduli, and the chief 
aim of this work was to test these predictions, 
both for bulk and shear moduli, using a new 
method which enables both these parameters, and 
also the Young's modulus and expansion coef- 
ficient to be determined on a single specimen. 

1.2. Theore t i ca l  
The. calculation of the various mechanical proper- 
ties Of composite materials has received con- 
siderable attention over recent years, and in 
particular the theory of the overall modulr of 
particulate composites is well developed. Rather 
less attention has been given to the calculation of 
thermal expansion coefficients of particulate com- 
posites, but exact theories now exist which relate 
the thermal expansion coefficient to the elastic 
moduli of the composite, and so the problem 
reduces to one of calculating the overall elastic 
moduli. 
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1.2. 1. Calculation o f  the overall elastic 
moduf i  

The earliest solutions to this problem follow the 
work of Einstein [1] and require that the filler 
particles are rigid, perfectly bonded, and spherical, 
and that the fluter concentration is low, and in 
general these treatments are not satisfactory for 
filler concentrations of more than 10 to 15 vol %. 
The various' equations were originally used to 
calculate the viscosity of composites with 
Newtonian viscous matrices, but because of the 
similarity between the elastic and hydrodynamic 
equations it is common practice to use these 
equations for the calculation of shear modulus of 
elastic matrix composites (Neilsen [2]). The 
Einstein equation becomes 

G 
- -  = I+2.5~b2 
G1 

where G, Gt are the overall and matrix shear 
moduli respectively, and q~2 is the volume concen- 
tration of filler. 

A second set of theoretical studies stems from 
the work of Bruggemann [3,4],  and includes the 
equations of Kemer [5] and van der Poel [6]. 
These methods take into account the stiffness of 
the filler, but again require low concentrations of 
perfectly bonded spherical particles. The equations 
due to Kerner are 

4~2 G2 4h 
G (7--5v,)G, +(8--10u,)G2 + 15(l--v~) 

[(7-- 5Vl)G 1 +(8-- 10Vl)G 2 

[ Klq~x + K24~2 ] 
K 3K1 + 4G1 3K2 + 4G1 

3K1 ~ 4G1 3K2 + 4G1 

where K, G, v are respectively the bulk' and shear 
moduli, and Poisson's ratio, and ~b is the volume 
concentration. Subscript 1 refers to the matrix 
phase, 2 to the disperse phase, and quantities with 
no subscript refer to overall composite properties. 
This bulk modulus equation is identical to that of 
van der Poel. 

More recent work follows the "self-consistent 
method" due to Hill [7] and Budiansky [8] which 
makes no assumption about concentration, but 

requires the particles to be ellipsoidal, and does 
not take into account the case where phase 
inversion does not occur. The results for G and K 
are 

~blK1 ~2K2 
F 

K1 +4G/3 K2 +4G/3 

[ q~lG2 + ~2G1 ] 
+5 U - o , I  + 2 = ~  

1 ~t 42 
H 

K + 4G/3 - K1 +4G/3 K2 +4G/3" 

The first equation may be solved by choosing a 
value for G and solving for q~l, and then K may be 
calculated. 

Methods which calculate bounds on the elastic 
constants using the energy principles of the theory 
of elasticity are those of Paul [9], Hashin and 
Shtrikman [10] and Walpole [1 I]. Generally these 
methods do not restrict the concentration or 
geometry of the particles, the sole limitation being 
that the composite must be macroscopically 
isotropic, and homogeneous. The Hashin- 
Shtrikman lower bound equations (HSLB) are 

1 + 6(K1 + 2G1)~bl 
G = G1 +q~ G2 G------~ 5G1(3K1 +4G1 

3~ 1 K = K1 +~b2 2 K1 3K1 +4Ga 

Upper bounds (HSUB) are obtained by inter- 
changing 1 and 2 everywhere. 

Probably the most commonly used of these 
equations are those of Kerner, Hashin and 
Shtrikman, and the SCM. In fact Kerner's equa- 
tion, although derived by different methods, is 
identical to the bounds equations of Hashin and 
Shtrikman. If the particulate phase is stiffer than 
the matrix, the Kerner equation coincides with the 
HSLB, and if the matrix phase is stiffer the upper 
bound is obtained. 

The Paul bounds are given by 

1/[(J,/G, + 02[G21 <~ G ~ 01 G1 + ~2G2 

1/[(9,/K, + $2/K2] <~K<~r + r 

1.2.2. Calculation o f  thermal expansion 
coeff icient 

The problem of calculating thermal 'expansion 
coefficients of compositeS appears to have been 
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neglected until the work of Turner [12] who gave 
the equation 

0/IK1r + 0/2K2r 
0/ 

K1r +K2r  

where a l ,  0/2, 0/ are the thermal expansion coef- 
ficients of the matrix, filler, and composite 
respectively. In this analysis the filler particles may 
be any size and shape, but the material is macro- 
scopically isotropic, and perfect adhesion exists 
between phases. Later, Thomas, in a work quoted 
by Nielsen [2], proposed the relation 

Kerner [5] derived the formula 

0/ = 0/1r + 0/2r -(0/1 -0/2)r162 

[ 1 11/[r +r + 3 ] 
E -Eq/I  K--,- 4Ol. 

This relation assumes perfect adhesion between 
phases, and spherical particles, and differs only 
slightly from the method of mixtures formula 
0/=0/1r +0/2r 

Schapery [13] has used variational principles to 
derive exact bounds for a in terms of the com- 
posite moduli, and in the case of two-phase 
materials the bounds are equal. The expression for 
a is then 

0/-- 30/2 Ka (K`2 -- K) 

3(0/1 --0/2) K(K2 --K1) 

If  only bounds on K are known, then only bounds 
on a may be calculated; the upper bound of K 
gives the lower bound of a and vice versa. The 
problem thus reduces to one of estimating K. If 
the Reuss equation for K(1/K = r + r 
is used, the method of mixtures formula (0/ = 
r q- r is obtained, whereas if the Voigt 
value for K is used (K = r q- r the result- 
ing equation for a is the Turner equation. If  the 
Kerner equation for K is substituted into the 
Schapery equation, then the resulting equation is 
Kemer's equation for 0/. 

In a parallel treatment using the self-consistent 
method, Levin, quoted by Laws [14], has derived 
the same result as Schapery. 

1:3. Experimental verifications 
Measurements in shear of isotropic particulate- 
reinforced polymer matrix composites are fairly 
common in the literature. Speake, Arridge and 
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Curtis [15] found the Hashin-Shtrikman lower 
bound (HSLB) in good agreement with shear 
modulus data for epoxy/glass beads for r up to 
0.35. Lewis and Nielsen [16] have used a modified 
HSLB equation to describe the shear modulus of 
an epoxy resin/glass beads material for filler 
concentrations of up to 40 vol %, and Kola~ik et al. 
[17] have used the same equation for poly- 
hydroxymethyl methacrylate (PHEMA) glass beads 
for r up to 0.5. 

Many workers prefer for experimental con- 
venience to measure Young's modulus. Provided 
G1, G2, K1, and K2 are known it is possible to 
calculate G(r and K(r from the various theor- 
etical predictions, and to calculate E of the com- 
posite from 

9K(r162 
E ( r  - 

3K(r + G(r 

This approach, which is only valid for isotropic 
composites has been used by several workers. 
Trachte and Dibenedetto [18] working on glass 
beads in polyphenylene oxide found good agree- 
ment with the HSLB up to r = 0.25. Ishai and 
Cohen [19] reached a similar conclusion for an 
epoxy resin polymer, filled with natural silica, and 
the same matrix filled with air for r up to 0.3. 
Smith [20] has used his own data and those of 
Richard [21] for glass beads in a polyester matrix 
for r up to 0.5, and finds the HSLB satisfactory 
up to r = 0.35. Above this the van der Poel 
equation is better, but both expressions give pre- 
dicted values which fall below the experimentally 
determined ones. Nicolais and co-workers [22- 
25] have looked at several glass bead composites 
(ABS, polyhydroxymethyl-methacrylate, SAN, 
polystyrene, and polyphenyleneoxide) and in all 
eases the HSLB gave good agreement for r up to 
0.4. 

In most of the studies mentioned above, all the 
results are derived for systems where the matrix 
material is in its glassy state. Thus it seems that 
the HSLB is able to give accurate predictions of E 
and G at least up to filler concentrations of 40 vol 
% for a wide range of isotropic polymer matrix 
composites. Bulk modulus data are much rarer, 
and apart from the present study the only exper- 
imental data appear to be those of van der Wal et 
al. [26] who used sodium chloride particles in a 
polyurethane rubber matrix. For r up to 0.7, 
good agreement was found with the van der Poel 
equation, which has the same values as HSLB for 



bulk modulus. The lack of data for K is rather 
surprising, considering the fundamental import- 
ance of bulk modulus. One area where K is very 
important is in the calculation of the thermal 
expansion coefficient of the composite, and this 
subject, although treated well theoretically, is 
rather neglected as regards experimental work. It 
was for this reason that the present work was 
undertaken. 

2. Materials and specime n preparation 
The matrix material used in this study was an 
epoxy resin, diglycidyl ether of bisphenol A, 
(DGEBA), (CIBA-Geigy MY 750), cured by nadic 
methyl anhydride, (NMA), (CIBA-Geigy HY 906). 
Small amounts of triethylamine were used as 
accelerator. The glass beads were supplied by 
Plastichem Ltd., and were "A" glass microspheres, 
Plastichem grade 3000, which corresponds to a 
particle size range of 4 to 44/~m diameter; Plasti- 
chem state that 80% of the beads lie within this 
range, the average particle diameter being 30/~m. 
This corresponds to a screen size of 325. The 
spheres were supplied with a coating [Plastichem 
code (CPO2)], which is a silane coupling agent 
designed to provide good adhesion to epoxy resins. 

The matrix material was composed of the 
following 

100 parts by weight DGEBA 
90 parts by weight NMA 

2 parts by weight triethylamine, 

and the cure schedule adopted by 16h at 100 ~ C, 
followed by 1 h at 150 ~ C and �89 at 200 ~ C. 

Specimen preparation is described in some 
detail in reference [27], and rather more briefly 
here. The methods used here all employ circular 
cylindrical specimens which were cast in a split 
mould in which a circular steel rod was centrally 
positioned. The split mould surfaces shape the 
outside surface of the specimen, whilst the inside 
surface is shaped by the steel rod. The beads were 
first added to the curing agent and were stirred 

continuously as the mixture was warmed to reduce 
its viscosity. The epoxy resin was then added and 
stirring continued for about 20min until all the 
glass surfaces had been wetted. The mixture was 
heated further, and left to stand to allow small air 
bubbles to escape. After another period of stirring 
the accelerator was added, the mixture stirred 
again, and transferred to the heated mould. The 
mould was then transferred to the curing oven 

where it was left to rotate slowly about a hori- 
zontal axis to prevent sedimentation of the glass 
beads. End plugs for the specimens were fashioned 
from material from the same batch and given the 
same cure as the specimen. Bead concentrations of 
0 to 40 vol % were used. 

3. Measurement of mechanical properties 
The main aim in devising the testing methods 
described here was to measure the bulk and shear 
mechanical p~operties ,~at ,tow~ strain: on the,' same 
specimen. This dispenses with the problems 
associated with nonlinear viscoelasticity and those 
associated with differences between specimens. 
The measurements made are of creep compliance 
[J(t) for shear, B(t) for bulk] which is related to 
stress relaxation modulus by 

fot :(r)G(t--r)dr = t 

fo G(r)J(t-- z)dr = t, 

(and similarly for bulk). G(t) may be calculated 
from J(t) by Laplace transform methods if the 
analytical form of J(t) is known, or otherwise by 
the numerical method of Hopkins and Hamming 
[281. 

However the relaxed and unrelaxed compliances 
JR and Yu are simply related to their modulus 
counterparts by 

Ju = 1/Gu; JR = 1/GR 

(and similarly for bulk). We follow usual practice 
and approximate the relaxed and unrelaxed com- 
pliances to the rubbery and glassy compliances 
respectively. Then, provided the transition region 
is avoided, the simple formulae may be used to 
relate compliance and modulus. Most of the theor- 
etical predictions quoted in Section 2 are derived 
for the case of elastic matrix composites. The 
theory of viscoelastic matrix composites is not. 
well-developed at present, and although some 
authors (Acierno, Nicolais, Vojta, and Janacek 
[25]); have tried using the appropriate visco- 

elastic functions in the existing equations for 
overall moduli, there is little formal justification 
for this procedure. 

All the values of modulus quoted here are the 
gradients of stress-strain curves containing at least 
eight data points. In all the measurements the 
strain was kept very small, and in no case was non- 
linearity of the stress-strain curve observed. 
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Figure 1 Apparatus for measurement of bulk compliance. 

1/~m. Using this method, values of K could be 
obtained for axial strains as low as 0.001%, but in 
general the axial strain level waskept below 0.01%, 
and an accuracy in K of about -+ 5% could readily 
be achieved. Such small strain levels are particul- 
arly desirable for measurement of K, because in 
bulk deformation nonlinearity of the stress-strain 
curve occurs at low strains. 

3.2. Shear modulus 
The experimental arrangement could be modified 
easily to measure shear modulus. The pressure 
supply and transducer assembly were removed, 
and a light disc attached to the bottom end of the 
specimen. Cords were passed around the disc and 
over two fixed pulleys, and weights could be 
attached to pans on the ends of the cords. Using 
this arrangement a constant torque could be 
applied to the specimen. A small mirror was 
attached to the bottom of the specimen, and a ray 
of light was beamed on to the mirror, and the 
reflected ray followed on a moving light cell chart 
recorder (Sefram Graphispot). This system allowed 
an accuracy of about 1% in the measurement of 
angle of twist, and the total error in the measured 
shear modulus was about 5%. The maximum shear 
strain used in this study was less than 0.1%. 

3.1. Bulk modulus 
Bulk modulus was measured using a method based 
on that used by Mallock [29] for metals in 1904. 
The method has been modified and used for 
polymers by Arridge [30] and a more detailed 
study has been conducted by Crowson [27]. The 
experimental arrangement is shown in Fig. 1. The 
specimen is in the form of a thin-walled circular 
cylinder, with closed ends. When the specimen 
is subjected to a uniform internal pressure P, the 
bulk modulus may be expressed in terms of the 
axial strain by 

K -  er~ 
3(r~ --r])e 

for the time independent case, where r i = internal 
radius of the specimen, r o = external radius of the 
specimen, and e = axial strain. A compressed 
nitrogen cylinder equipped with a reducing valve 
provided the pressure, and a precision Bourdon 
gauge (Budenberg Ltd.) was used for pressure 
measurement. The axial strain was measured using 
a linear variable differential transformer (LVDT) 
(Electromechanisms Ltd.), which is sensitive to 

3.3. Young's modulus 
Young's modulus could be measured on the same 
specimen with very little modification. The press- 
ure supply system was disconnected, and a light 
cradle was attached to the bottom of the speci- 
men. Weights could be put on to the cradle, which 
was balanced to ensure the load was applied 
axially. The displacement of the bottom end of 
the tube was measured using the same LVDT 
transducer as used for bulk modulus measure- 
ments, and an accuracy of 5% in E could be 
achieved for strains of less than 0.01%. The 
Young's modulus measurements did not form a 
major part of the work described here, but were 
used only to provide checks on the K and G data 
reported here. 

3.4. Expansion coefficient 
The linear thermal expansion coefficient was 
measured using the displacement measurement 
system described in 3.1. Temperature was varied 
using a coil-wound heater which enclosed the 
specimen. The heater was controlled by a Euro- 
therm temperature controller which could main- 

2158 



tain temperature to better than 0.1~ The 
expansion coefficient is given by 

1 lT --  l0 

lo T - - T o  

where lo = original specimen length at To, lT = 
specimen length at T. 

The procedure adopted was to change tempera- 
ture in steps of 10~ allowing 10min between 
each reading. Readings were taken both for 
ascending and descending temperatures and graphs 
of zX/(=/T -- lo) against T were plotted. From 
such graphs the gradient was taken and 

gradient 

lo 

The temperature range employed was sufficient to 
include the transition region, and by taking the 
gradient of the two tangents to the curve well 
below and well above Tg the values of glassy 
expansion coefficient (ag) and rubbery expansion 
coefficient (at) could be measured. The point of 
intersection of the two tangents defines Tg. 

4. Results a n d  d i s c u s s i o n  
The results of the bulk and shear moduli against 
filler concentration are shown in Figs. 2 and 3 
respectively. The data presented in these two 
graphs were obtained at room temperature (21 ~ C). 
The data for the specimen containing 30 vol% 
beads show a considerable discrepancy from the 
trend of the rest of the results, and this is probably 
because this specimen had a much thinner wall. 
This means that the contribution of the uncer- 
tainty in wall thickness to the error in K and G is 
much larger, and so-this discrepancy is within 
experimental error for that particular specimen. 
Errors in G and K for the other specimens are 
expected to be less than 5%. 

Also shown in these graphs are the values pre- 
dicted by the equations of Hill, Paul and Hashin 
and Shtrikman. The values used for calculation of 
these theoretical predictions are K1 = 27.5 kbars, 
G1 = 12.5 kbars, K2 = 400kbars, G2 = 304kbars. 
It should be noted that the data for the matrix 
material were obtained by measurement on an 
unfilled specimen. However the filler data are 
those of Lowrie [31] and refer to "E" glass. The 
filler in the present case is "A" glass, but no values 
for K and G have been found for this material in 
the literature. According to Ritter [32], the 
Young's moduli of "E" and "A" glass are 10.5 • 
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Figure 2 Bulk modulus versus volume fraction of beads at 
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10 6 and 11.0 x 10 6 psi respectively, and thus it 

seems reasonable to use the quoted values for "E" 
glass, since the difference between the two fillers 
will be apparent only at very high filler concentra- 
tions. ~0o 

From Figs. 2 and 3 it is apparent that the best 
prediction, both for K and G is that of the Hashin 
and Shtrikman lower bound (HSLB) (or Kerner's 
equation for the case of a stiff filler). Paul's 
bounds are too widely spaced to be useful, and 

"E 
Hill's SCM' equation predicts too much reinforce- 
ment at high filler concentration. ~ 

So far the discussion has been limited to glassy ~' lc 
matrix composites, where viscoelastic effects are 
small. In addition measurements were made for 
one specimen (40vo1% filler) over a range of 
temperature including the transition region, and 
the results are shown in Figs. 4 and 5, in the form 
of graphs of reciprocal of compliance against 
temperature. The Hashin and Shtrikman equations 
are also included in these figures, but it should be 
noted that these equations were derived for elastic 
matrix composites, and so they are not expected 
to be valid in the transition region, where visco- 
elastic effects are prominent. The behaviour of the 
unfilled material in bulk and shear versus tempera- 
ture is shown in Fig. 6, and it is obvious that the 10o 
effect of the filler is to reduce the size of the 
relaxation both for bulk and shear deformations; 
that is to say that the reinforcing effect of the 
filler is greater above Tg than below. The Hashin- 
Shtrikman bounds shown in Figs. 4 and 5 were 
calculated from matrix data taken from Fig. 6, and 
the elastic constants of the filler material were 
assumed to be independent of temperature. This 

1 
seems to be a fair assumption since the transition 
temperature of the filler material is well above the 
maximum temperature used here. From Figs. 4 
and 5 it may be seen that the measured values of "Z 

1/B and 1/J in the rubbery region are about 3 
times higher than the HSLB predictions. Similar _ 
observations have been made by other authors. 
Nicolais and co-workers [25] found that the 
HSLB could provide good agreement with their E 
and G data for polyhydroxyethylmethacrylate/ 
glass beads below the matrix Tg, but that the pre- 
diction was only half the measured value above Tg. 
Speake et aI. [15] found a similar effect for shear 
modulus of an epoxy resin/glass beads material, 
and Arridge [33] worked on an epoxy resin 
material unidirectionally reinforced with silica 
fibres, and found that simple fibre-reinforcement 
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Figure 6 Reciprocal of bulk and shear compliance versus 
temperature for the unfilled specimen. 

theories which gave good agreement below the 
matrix Tg were too low by factors of up to 3 
above Tg. The only data available for K for a filled 
material above the matrix Tg, apart from the 
present study, again appear to be those of van der 
Wal et  al. [26] who found that the HSLB agreed 
with experiment both in the glassy and rubbery 
regions of the composite. This result is contrary to 
that of present study and a possible reason for the 
discrepancy is suggested later. 

The origin of the discrepancy between theory 
and experiment at temperatures above the matrix 
Tg has been discussed by Nielsen and Lewis [34] 
who take as their starting point the thermally- 
induced stress in the matrix due to the different 
thermal expansion coefficients of the two phases. 
If  the specimen is fabricated above ambient 
temperature, then on cooling the two phases 
contract by different amounts. I f  al < a2 (as is 
usually the case) the matrix is put into a state of 
hydrostatic tension. Because of the non4inearity 
of the stress-strain curve the modulus now 
measured for a small strain deformation is differ- 
ent from that obtained when the material is in the 
unstressed state. If  the superimposed stress is a 
hydrostatic tension then the modulus K will be 
lower than in the unfilled material. I f  the super- 
imposed stress is shear then the situation is less 

simple. It is well known [35-38] that an applied 
hydrostatic pressure will increase the shear 
modulus by reducing the free volume and making 
it more difficult for molecular segments to move. 
Presumably a hydrostatic tension will increase the 
free volume and lower Tg which may lead to a 
decrease in G. Such an effect is predicted by Ferry 
and Stratton [39], although a competing mech- 
anism has been proposed by Sternstein and Ho 
[40]. If, therefore, the effective matrix modulus 
could be inserted into the HSLB equation the 
predicted composite modulus would fall below 
experimental results. As the composite is heated to 
temperatures above Tg the thermally4nduced 
stress is relieved, and the effective matrix modulus 
approaches that of the unfilled material. If  this 
argument is correct, then the HSLB predictions 
would fall below experiment at all temperatures if 
the true matrix modulus could be used in the 
HSLB equations. 

It is interesting to note that no discrepancy 
between theory and experiment was noticed for 
bulk modulus (van der Wal et  al. [26] ), or shear 
modulus (Schwarzl et  al. [41]) of a polyurethane 
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Figure 7 Glassy expansion coefficient versus volume frac- 
tion of beads at 21 ~ C. 
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rubber filled with rock salt. The reason for this is 
probably that the expansion coefficients of the 
two materials are closer together than for the 
composite systems mentioned previously. (a l /a2  

6 for polyurethane/salt, whereas e l / a 2  ~ 20 for 
epoxy/glass). From Figs. 4 and 5 it may be seen 
that the discrepancy between HSLB and exper- 
iment is greater for bulk modulus than for shear 
modulus in the rubbery region 

( K experimental G experimental 31 
- ~ ~  ~5; Gpredicted / " 

The reason for this is unclear, but when the 
dependence of shear modulus on applied hydro- 
static stress is better established it may be possible 
to make an explanation. 

Figs. 7 and 8 show the variation of ag and ar 
(the glassy and rubbery expansion coefficients) on 
filler concentration, and the predictions of Kerner, 
Turner and Thomas are also included. The Kerner 
equation appears to give the best agreement both 
for ag and a~, and this equation is close to the 
method of mixtures equation 

15C o 

140 \\\\\ "k~~O~ Method of / 130 

- \\. '~.~g~,~u res 
, 

11C \ \ \ \  Ker 

100 \ 

\ ] \[ ] 
0 0,1 0.2 0 3 0.4 

~2 " 
Figure 8 Rubbery expansion coefficient versus volume 

fraction of  beads at  21 ~ C. 
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TAB LE I Tg values for different filler contents 

92 Tg( ~ C) 92 Tg( ~ C) 

0 139 0.25 142 
0.05 143 0.30 147 
0.10 146 0.35 144 
0.15 144 0.44 139 
0.20 145 

It is of some interest to compare values of Tg 
on the different specimens. Table I contains values 
obtained from thermal expansion data, and there 
seems to be no systematic variation of Tg with qS. 
Data are also available for the 0 and 40 vol% 
specimens from the plots of 1/11 and 1/J against T 
in Figs. 6 and 7, and from these it seems that the 
Tg of the specimen containing 40 vol % filler is 
some 10 ~ C above the Tg of the unfilled material. 
The reason for a difference between values derived 
from compliance measurements and values derived 
from a is unclear, but evidence for Tg shift due to 
filler has been found by several workers. Nicolais 
and co-workers [25, 42] have used differential 
scanning calorimetry (DSC) and differential 
thermal analysis (DTA) to study polyphenylene 
oxide/glass beads and polyhydroxyethylmeth- 
acrylate/glass beads, and noticed Tg increases of 
up to 9 ~ C for q~2 = 0.4. This increase in Tg was 
seen both for the composite, and for a physical 
mixture of the two components, and the authors 
concluded that the Tg increase was due to changes 
in specific heat and thermal conductivity of the 
system, and not to changes in chain mobility or 
free volume. 

Droste and Dibenedetto [43] used DTA and 
reported a 4 ~ C increase in Tg of a phenoxy/glass 
bead polymer for q~2 = 0.4, whereas Landel and 
Smith [44] saw an increase in Tg of 20~ for a 
polyurethane rubber/ammonium perchlorate ma- 
terial at q52 = 0.5. Nielsen et  al. [45] observed 
Tg increases in a polystyrene/mica material, and in 
a later paper Nielsen [46] attributes the effect to 
the absorption of the matrix polymer "on to the  
filler surfaces. This is expected to restrict the 
motion 'of the chain segments near the filler sur- 
face, and thus lead to an increase in Tg. A similar 
explanation was put forward by  Iisaka and 
Shibayama [47] who worked on an epoxy resin 
filled with mica flake and/or glass beads. Lipatov 
et  al. [48] studied the effect of filler on the shear 
relaxation time spectra of quartz powder in an 
epoxy resin matrix, and found that at high filler 
concentrations the spectrum is shifted to longer 



t imes. This observat ion is consis tent  wi th  an 

increase in Tg wi th  filler con ten t ,  and they  suggest 

that  there are two compet ing  mechanisms which  

tend  to change Tg as q5 2 increases: one is the ef fec t  

o f  immobi l i za t ion  o f  the po lymer  segments which 

are absorbed on to  the s surface,  leading to an 

increase in Tg; the o ther  e f fec t  is due to the non-  

deformabi l i ty  o f  the filler part icles (which are rigid 

compared  to the matr ix) ,  which  means that  most  

o f  the de fo rmat ion  will take place wi th in  the 

mat r ix  phase, and so leads to a reduc t ion  in the 

average re laxat ion t ime i.e. a decrease in Tg. In 

most  cases it wou ld  seem that  the fo rmer  ef fec t  is 

larger, and the result  is an increase i n  Tg wi th  

filler. However  there are cases in the  l i terature 

[49] where Tg decreases wi th  filler, and it  may  be 

that  in these cases the la t ter  e f fec t  dominates .  

I f  the explana t ion  o f  Lipatov et  al. is correct  

there should be a dependence  o f  compos i te  

modulus  and Tg on particle size. For  small part- 

icles the a m o u n t  o f  interface for cons tant  vo lume 

fract ion increases, and thus the Tg shift  should be 

larger because more  o f  the po lymer  ma t r ix  would  

be absorbed and part ly immobi l i zed  on the filler 

surface ( if  the fo rmer  ef fec t  dominates) .  This 

appears to be a rather  neglec ted  area, and the only  

relevant work  seems to be tha t  o f  Al ter  [50] ,  who  

suggested that  composi te  modulus  for  cons tant  r 

increases l inearly wi th  the reciprocal  o f  the par- 

t icle diameter .  No predic t ion was made for the 

dependence  o f  Tg on part icle size. 
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